Syntheses and molecular structures of some phosphine-gold(I) derivatives of 1,3-diynes

Michael I. Bruce ${ }^{\text {a,* }}$, Martin Jevric ${ }^{\text {a }}$, Brian W. Skelton ${ }^{\text {b }}$, Mark E. Smith ${ }^{\text {a }}$, Allan H. White ${ }^{\text {b }}$, Natasha N. Zaitseva ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
${ }^{\mathrm{b}}$ Chemistry M313, University of Western Australia, Crawley, WA 6009, Australia

Received 3 June 2005; received in revised form 23 August 2005; accepted 23 August 2005
Available online 15 December 2005

Abstract

The syntheses of several diynylgold(I) phosphine complexes, including $\mathrm{Au}(\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CH})\left\{\mathrm{P}(\mathrm{tol})_{3}\right\}(\mathbf{1}), \mathrm{Au}\left(\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)\left(\mathrm{PR}_{3}\right)$ $\left(\mathrm{R}=\mathrm{Ph}\right.$ 2-Ph, tol 2-tol), $\mathrm{Au}(\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CFc})\left(\mathrm{PPh}_{3}\right)(3),\left\{(\mathrm{tol})_{3} \mathrm{P}\right\} \mathrm{Au}(\mathrm{C} \equiv \mathrm{C})_{n} \mathrm{Au}\left\{\mathrm{P}(\mathrm{tol})_{3}\right\} \quad\left[n=2\right.$ (4), 3 (6), 4 (7)], $\left\{\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{Au}\right\} \mathrm{C} \equiv$ $\mathrm{CC} \equiv \mathrm{C}\left\{\mathrm{Au}\left[\mathrm{P}(\mathrm{tol})_{3}\right]\right\} \quad(5), \quad[\mathrm{ppn}]\left[\mathrm{Au}\left\{\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CAu}\left[\mathrm{P}(\mathrm{tol})_{3}\right]\right\}_{2}\right] \quad(8), \quad\left[\mathrm{Au}_{2}(\mu-\mathrm{I})(\mu-\mathrm{dppm})_{2}\right]\left[\mathrm{Au}\left(\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)_{2}\right] \quad(9), \quad \mathrm{Hg}\{\mathrm{C} \equiv \mathrm{CC} \equiv$ $\left.\mathrm{CAu}\left(\mathrm{PR}_{3}\right)\right\}_{2}(\mathrm{R}=\mathrm{Ph} \mathbf{1 0 - P h}$, tol $\mathbf{1 0 - t o l})$ and $\{($ triphos $) \mathrm{Cu}\} \mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{C}\left\{\mathrm{Au}\left[\mathrm{P}(\mathrm{tol})_{3}\right]\right\}(\mathbf{1 1})$ are described. Of these, the X-ray molecular structures of 1, 2-tol, 3, 4 and 9 have been determined. © 2005 Elsevier B.V. All rights reserved.

Keywords: Diynyl-gold(I) complexes; Phosphine-gold(I) complexes; X-ray diffraction; Crystal structures

1. Introduction

Contemporary interest in gold(I) chemistry derives in part from its tendency to adopt linear two-coordination [1] and the formation of weak gold-gold intramolecular interactions (aurophilicity) [2]. In conjunction with alkynyl or poly-ynyl groups, this can result in the formation of rigid-rod materials [3], which may have unusual non-linear optical [4] or photo-emission properties [5]. The conscious employment of the aurophilic character has resulted in design and construction of unusual geometries [6]. Our own interest has previously encompassed some of these features (Scheme 1) [7], while more recently, we have used elimination of phosphine-gold(I) halides as a component of reactions designed to give long carbon chains endcapped by redox-active metal centres, which are modifications of the well-known Sonogashira reaction [8]. In the course of this work, we have made and characterised sev-

[^0]eral derivatives of 1,3-diynes, which extend the earlier studies and are summarised in Scheme 2.

2. Results and discussion

Following established procedures, the reaction between $\mathrm{AuCl}\left\{\mathrm{P}(\text { tol })_{3}\right\}$ and buta-1,3-diyne was carried out in a thf/diethylamine solvent mixture in the presence of CuI to give pale yellow $\mathrm{Au}(\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CH})\left\{\mathrm{P}(\text { tol })_{3}\right\}(1)$ in 63% yield. The IR spectrum of this compound contains $v(\equiv \mathrm{CH})$ and $v(\mathrm{C} \equiv \mathrm{C})$ absorptions at 3300 and $2157 \mathrm{~cm}^{-1}$, respectively, while its ${ }^{1} \mathrm{H}$ NMR spectrum contains singlet resonances at $\delta 1.66$ and 2.38 , assigned to the $\equiv \mathrm{CH}$ and Me protons, respectively, and a multiplet between $\delta 7.20$ and 7.43 for the $\mathrm{C}_{6} \mathrm{H}_{4}$ protons. In the ${ }^{13} \mathrm{C}$ NMR spectrum, resonances at $\delta 22.17$ and between 125.7 and 142.0 arise from the tolyl groups; only three of the four diynyl carbons were found, at $\delta 60.14\left(\mathrm{C}_{\delta}\right), 69.55\left(\mathrm{C}_{\gamma}\right)$ and $85.49\left(\mathrm{C}_{\beta}\right)$. The ${ }^{31} \mathrm{P}$ NMR spectrum contains a singlet at δ 40.3 from the $\mathrm{P}(\text { tol })_{3}$ ligand.

Scheme 1.

The related complexes $\mathrm{Au}\left(\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)\left(\mathrm{PR}_{3}\right)$ ($\mathrm{R}=\mathrm{Ph} 2-\mathrm{Ph}$, tol 2-tol) were obtained in 77% and 67% yields from similar reactions of $\mathrm{AuCl}\left(\mathrm{PR}_{3}\right)$ employing $\mathrm{HC} \equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}$. Their spectroscopic properties include three $v(\mathrm{C} \equiv \mathrm{C})$ absorptions between 2184 and $2036 \mathrm{~cm}^{-1}$ (probably arising from Fermi coupling) and resonances at $\delta 0.14 / 0.13\left(\mathrm{Ph} /\right.$ tol, $\left.\mathrm{SiMe}_{3}\right), 2.37$ (tol Me) and multiplets at δ 7.19-7.51 (aromatic). The ${ }^{13} \mathrm{C}$ NMR spectrum contains the expected resonances at $\delta-0.12 /-0.14(\mathrm{Ph} / \mathrm{tol}$, SiMe_{3}), 21.41 (tol Me) and between $\delta 128.8$ and 142.0 (aromatic). Again, only three of the diynyl carbons were found, at $\delta 78.71 / 78.89\left(\mathrm{C}_{\delta}\right), 86.67 / 87.02\left(\mathrm{C}_{\gamma}\right)$ and $89.52 / 89.62$ $\left(C_{\beta}\right)$.

Treatment of a mixture of $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)$ and $\mathrm{HC} \equiv \mathrm{CC} \equiv$ CFc in MeOH with KOH afforded orange $\mathrm{Au}(\mathrm{C} \equiv \mathrm{CC} \equiv$ $\mathrm{CFc})\left(\mathrm{PPh}_{3}\right)$ (3) in 85% yield. This compound has weak $v(\mathrm{C} \equiv \mathrm{C})$ bands at 2191 and $2053 \mathrm{~cm}^{-1}$, while the ${ }^{1} \mathrm{H}$ NMR spectrum contains multiplets for $\mathrm{C}_{5} \mathrm{H}_{4}(\delta 3.83$, 4.34) and Ph protons ($\delta 6.88-6.98,7.10-7.16$) accompanied by the $\mathrm{Fe}-\mathrm{Cp}$ singlet at $\delta 4.01$. In the ${ }^{13} \mathrm{C}$ NMR spectrum,
signals at $\delta 69.19$ and 72.85 assigned at the $\mathrm{C}_{5} \mathrm{H}_{4}$ carbons, a multiplet between $\delta 128.2$ and 134.9 to the Ph carbons, were accompanied by resonances at $\delta 66.61\left(\mathrm{C}_{\delta}\right), 70.36$ $\left(\mathrm{C}_{i p s o}\right.$ of Fc$), 70.65(\mathrm{Fe}-\mathrm{Cp}), 74.82\left(\mathrm{C}_{\gamma}\right)$ and $88.27\left(\mathrm{C}_{\beta}\right)$. The ${ }^{31} \mathrm{P}$ resonance for the PPh_{3} ligand is at δ 41.4. In this case, M^{+}in the ES-MS occurs at $m / z 692$.

The molecular structures of $\mathbf{1 , 2} \mathbf{2}$-tol and $\mathbf{3}$ were determined by single-crystal X-ray diffractometry and plots of single molecules are shown in Fig. 1. Selected bond parameters are collected in Table 1. Generally, there are no unusual intermolecular interactions. The phosphine-gold(I) moiety is σ-bonded to the diynyl ligand [Au-C(1) 2.272(3), $2.2779(9), 2.276(2) \AA$, respectively], while the short-long-short $\mathrm{C}-\mathrm{C}$ separations along the chain are consistent with the diynyl formulation, with there being no evidence for π-electron delocalisation. In 1, the H atom attached to $\mathrm{C}(4)$ was located in difference maps; in 2-tol, $\mathrm{C}(4)-\mathrm{Si}(4)$ is $1.808(5) \AA$, while in $\mathbf{3}$, the $\mathrm{C}(4)-\mathrm{C}(41)$ distance is $1.417(9) \AA$, a normal value for a $\mathrm{C}(\mathrm{sp})-\mathrm{C}\left(\mathrm{sp}^{2}\right)$ separation. The six-atom $\mathrm{P}-\mathrm{Au}-\mathrm{C}(1-4)$ chains are essentially linear,

8

11

Scheme 2.
with maximum deviations being 9° [at $\mathrm{C}(1)$ in 1], 5.1° [at Au in 2-tol] and 3.5° [at $\mathrm{C}(3)$ in 3]. Total bending amounts to $20.5^{\circ}(\mathbf{1}), 19.55^{\circ}(\mathbf{2 - t o l})$ and $11.4^{\circ}(9)$.

Of note are the larger displacement ellipsoids for $\mathrm{C}(3)$ and $C(4)$ in 1 , suggesting relatively larger vibrational amplitudes for these atoms, consistent with present ideas concerning the low bending force constant in chains of $\mathrm{C}(\mathrm{sp})$ atoms [9]. Molecules of 2-tol co-crystallise with $\operatorname{AuI}\left\{\mathrm{P}(\mathrm{tol})_{3}\right\}$ in the proportion $80 / 20$. The individual components were independently isolable and refinable and data are quoted to the relevant statistics.

The symmetrical digold complex $\left\{(\text { tol })_{3} \mathrm{P}\right\} \mathrm{AuC} \equiv$ $\mathrm{CC} \equiv \mathrm{CAu}\left\{\mathrm{P}(\mathrm{tol})_{3}\right\}(4)$ was prepared by two routes. Treatment of a mixture of $\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}$ and $\mathrm{AuCl}\left\{\mathrm{P}(\text { tol })_{3}\right\}$ in MeOH with NaOH gave the pale yellow
compound in 85% yield, while coupling of $\mathrm{Au}(\mathrm{C} \equiv$ $\mathrm{CC} \equiv \mathrm{CH})\left\{\mathrm{P}(\text { tol })_{3}\right\} \quad$ (1) with another equivalent of $\mathrm{AuCl}\left\{\mathrm{P}(\text { tol })_{3}\right\}$ in thf $/ \mathrm{NHEt}_{2}$ in the presence of CuI gave a 78% yield. The ${ }^{1} \mathrm{H}$ NMR spectrum contains signals at δ $2.29(\mathrm{Me})$ and between $\delta 7.12$ and $7.32\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$, while the ${ }^{13} \mathrm{C}$ NMR resonances at $\delta 21.39(\mathrm{Me})$ and between δ 126.6 and 141.7 similarly arise from the $\mathrm{P}(\text { tol })_{3}$ ligand, which also gives ${ }^{31} \mathrm{P}$ resonance at $\delta 40.6$. The two diyndiyl carbons are found at $\delta 88.11\left(\mathrm{C}_{\beta}\right)$ and $119.89\left(\mathrm{C}_{\alpha}\right)$; the latter shows a doublet $J(\mathrm{CP})$ coupling of 140 Hz . Related complexes containing PPh_{3} [8] or PCy_{3} [10] are known.

The molecular structure of 4 is shown in Fig. 2, with selected bond parameters in Table 1. The molecule is not centrosymmetric, but the dimensions of both halves are essentially identical. The $\mathrm{Au}-\mathrm{P}$ distances are 2.275,

c

Fig. 1. Plots of single molecules of: (a) $\mathrm{Au}(\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CH})\left\{\mathrm{P}(\mathrm{tol})_{3}\right\}$ (1), (b) $\mathrm{Au}\left(\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)\left\{\mathrm{P}(\text { tol })_{3}\right\} \quad$ (2-tol), also showing co-crystallised $\mathrm{AuI}\left\{\mathrm{P}(\mathrm{tol})_{3}\right\}$, and (c) $\mathrm{Au}(\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CFc})\left(\mathrm{PPh}_{3}\right)(\mathbf{3})$.
2.273(1) \AA and the $\mathrm{Au}-\mathrm{C}$ separations are both $1.996(5) \AA$. Along the chain, the short-long-short separations support the diyndiyl formulation with no delocalisation of π-electron density. The $\mathrm{P}-\mathrm{Au}-\mathrm{C}_{4}-\mathrm{Au}-\mathrm{P}$ chain is essentially linear, with a maximum deviation at $\mathrm{C}(4)\left(10.8^{\circ}\right)$ and total bending of 22.2°, all in the same sense; the separation $\mathrm{P}(1) \cdots \mathrm{P}(2)$ is $12.235(2) \AA$, some $0.20 \AA$ shorter than the sum of interatomic distances $(12.43 \AA)$. In the cell (Fig. 2(b)), it can be seen that packing of individual molecules is influenced by $\mathrm{Ph} \cdots \mathrm{Ph}$ interactions.

The mixed ligand complex $\left\{\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{Au}\right\} \mathrm{C} \equiv \mathrm{CC} \equiv$ $\mathrm{C}\left\{\mathrm{Au}\left[\mathrm{P}(\text { tol })_{3}\right]\right\}$ (5) was obtained in 51% yield from $\mathrm{Au}(\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CH})\left(\mathrm{PPh}_{3}\right)$ and $\mathrm{AuCl}\left\{\mathrm{P}(\text { tol })_{3}\right\}$ in thf $/ \mathrm{NHEt}_{2}$ in the presence of CuI . In addition to the resonances from the PR_{3} ligands, the ${ }^{13} \mathrm{C}$ NMR spectrum contained resonances assigned to the diyndiyl chain at $\delta 85.78\left(\mathrm{C}_{\beta}\right)$, $88.23\left(\mathrm{C}_{\gamma}\right), 125.80\left(\mathrm{C}_{\alpha}\right.$, broad $)$ and $126.96\left(\mathrm{C}_{\delta}\right.$, broad $)$; the ${ }^{31} \mathrm{P}$ NMR spectrum has two singlets at $\delta 40.2$ $[\mathrm{P}($ tol $) 3]$ and $42.6\left(\mathrm{PPh}_{3}\right)$. Assignments are based on comparisons with the homo-disubstituted compounds.

Use of NaOH as base was also applicable to complexes containing longer carbon chains, reactions between $\mathrm{AuCl}\left\{\mathrm{P}(\text { tol })_{3}\right\}$ and $\mathrm{Me}_{3} \mathrm{Si}(\mathrm{C} \equiv \mathrm{C})_{n} \mathrm{SiMe}_{3}(n=3$, 4) giving the corresponding $\left\{(\text { tol })_{3} \mathrm{P}\right\} \mathrm{Au}(\mathrm{C} \equiv \mathrm{C})_{n} \mathrm{Au}\left\{\mathrm{P}(\text { tol })_{3}\right\}[n=3$ (6), 4 (7)] in 76 and 20% yields, respectively. Compound 7 was also obtained by oxidative coupling of 1 using either $\mathrm{Cu}(\mathrm{OAc})_{2}$ in pyridine (57%) or dioxygen in the presence of $\mathrm{CuCl} /$ tmeda (33%). These two compounds contained ${ }^{1} \mathrm{H}$, ${ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ resonances for the $\mathrm{P}(\text { tol })_{3}$ ligands in the expected positions. In the IR spectrum, medium intensity $v(\mathrm{C} \equiv \mathrm{C})$ bands are found at 2139 and 2115 (6) and at 2167 and $2134 \mathrm{~cm}^{-1}(7)$, while we assign singlets at δ $81.63\left(\mathrm{C}_{\gamma}\right), 88.13\left(\mathrm{C}_{\beta}\right)$ and $127.94\left(\mathrm{C}_{\alpha}\right.$, broad) (6) and at δ $60.91\left(\mathrm{C}_{\delta}\right), 67.23\left(\mathrm{C}_{\gamma}\right), 86.94\left(\mathrm{C}_{\beta}\right.$, broad) and $131.29\left(\mathrm{C}_{\alpha}\right.$, broad) (7) to the various carbons of the poly-ynyl chains. Che and co-workers have described analogues with PCy_{3} for $n=2-4[10]$ and have studied their ${ }^{3}(\pi \pi *)$ emissivities. In turn, theoretical studies have characterised the geometries of the singlet and triplet states [11].

The use of $[\mathrm{ppn}]\left[\mathrm{Au}(\mathrm{acac})_{2}\right]$ for the preparation of anionic gold(I) derivatives of alkynes has been described on several occasions [12]. During the present work, we have found that the direct reaction between [ppn][Au(acac) $)_{2}$] and $\mathbf{1}$ in a dichloromethane/diethylamine solvent mixture afforded $[\mathrm{ppn}]\left[\mathrm{Au}\left\{\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CAu}\left[\mathrm{P}(\mathrm{tol})_{3}\right]\right\}_{2}\right]$ (8) in 39% yield as a creamy white solid. In the NMR spectra, signals for the $\mathrm{P}(\text { tol })_{3}$ ligand were found at $\delta_{\mathrm{H}} 2.29$ and $\delta_{\mathrm{C}} 21.36$ (Me), between $\delta_{\mathrm{H}} 7.15$ and 7.62 and $\delta_{\mathrm{C}} 125.5$ and 141.8 $\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$ and at $\delta_{\mathrm{P}} 39.62$; the ppn resonance is at $\delta_{\mathrm{P}} 22.21$. The weak IR $v(\mathrm{C} \equiv \mathrm{C})$ band is at $2145 \mathrm{~cm}^{-1}$. Overall, this compound is very similar to the PPh_{3} analogue [7].

A similar anionic complex, $\left[\mathrm{Au}_{2}(\mu-\mathrm{I})(\mu-\mathrm{dppm})_{2}\right]$ $\left[\mathrm{Au}\left(\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)_{2}\right](9)$, was obtained from the reaction between $(\mathrm{AuCl})_{2}(\mu$-dppm $)$ and $\mathrm{HC} \equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}$ in a thf $/ \mathrm{NHEt}_{2}$ mixture in the presence of CuI . This light yellow compound shows $v(\mathrm{C} \equiv \mathrm{C})$ at 2176 and $2122 \mathrm{~cm}^{-1}$, while the ${ }^{1} \mathrm{H}$ NMR spectrum contains a singlet at $\delta 0.16$ for the SiMe_{3} protons, as well as multiplets at $\delta 4.57$ and between $\delta 7.24$ and 7.76 from the dppm protons. The ${ }^{31} \mathrm{P}$ resonance is at $\delta 27.7$. Both components of the salt were found in the positive or negative ion mode ES-MS, the $\left[\mathrm{Au}_{2} \mathrm{I}(\mathrm{dppm})_{2}\right]^{+}$cation at $m / z \quad 1289$ and the $\left[\mathrm{Au}\left(\mathrm{C}_{4}{ }^{-}\right.\right.$ $\left.\left.\mathrm{SiMe}_{3}\right)_{2}\right]^{-}$anion at $m / z 439$, respectively.

The cation in 9 (Fig. 3(a)) has been structurally characterised on two previous occasions, with iodide [13, no atom coordinates available] and $\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}$counter-ions [14], these being obtained serendipitously from reactions of

Table 1
Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$

Complex	1	$2^{\text {a }}$	3	4	$9^{\text {b }}$
Bond distances (\AA)					
$\mathrm{Au}-\mathrm{P}$	2.272(3)	2.2779(9)	2.276(2)	2.275(1), 2.273(1)	
$\mathrm{Au}-\mathrm{C}(1)$	1.99 (1)	1.993 (6)	2.010 (7)	1.996 (5)	2.009, 1.984(8)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.19(2)	1.163(9)	1.18(1)	$1.196(6)$	1.15, 1.21(1)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.38(2)	1.418(8)	$1.39(1)$	1.390 (6)	1.42, 1.39(1)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.19(3)	$1.229(7)$	1.20 (1)	1.215 (6)	1.21, 1.21(1)
$\mathrm{C}(4)-\mathrm{X}$		$1.808(5)[\mathrm{Si}(4)]$	$1.417(9)[\mathrm{C}(41)]$	$1.996(5)[\mathrm{Au}(2)]$	$1.83,1.84(1)[\mathrm{Si}]$
Bond angles (${ }^{\circ}$)					
$\mathrm{P}-\mathrm{Au}-\mathrm{C}(1)$	172.5(3)	174.9(2)	178.6(2)	178.7(2), 176.2(2)	
$\mathrm{Au}-\mathrm{C}(1)-\mathrm{C}(2)$	171(1)	176.3(6)	177.3(6)	176.3(6)	174.0(7), 175(1)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	177(1)	176.6(6)	177.6(9)	178.6(6)	174, 175(1)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	179(1)	177.1(6)	176.5(7)	178.8(5)	177, 180(1)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{X}$		177.7(4) [Si(4)]	178.6(8)	$169.2(6)[\mathrm{Au}(2)]$	170(1), 170.5(9) [Si]

${ }^{\text {a }}$ For 2, $\mathrm{AuI}\left\{\mathrm{P}(\text { tol })_{3}\right\}$ component (19%) : Au-I $2.598(3) \AA, \mathrm{P}-\mathrm{Au}-\mathrm{I} 177.85(6)^{\circ}$.
${ }^{\mathrm{b}}$ For 5, $\left[\mathrm{Au}_{2}(\mu-\mathrm{I})(\mu-\mathrm{dppm})_{2}\right]^{+}$cation: $\mathrm{Au}(1)-\mathrm{Au}(2) 2.9576(4)$. $\mathrm{Au}(1,2)-\mathrm{I} 3.1014,3.1071(6), \mathrm{Au}-\mathrm{P} 2.310-2.320(3) \AA$; $\mathrm{Au}(1)-\mathrm{I}-\mathrm{Au}(2) 56.90(1), \mathrm{P}-\mathrm{Au}-\mathrm{P}$ 164.70, 166.34(7), P-C(0)-P 115.9(4), 115.0(4) ${ }^{\circ}$. For anion, $\mathrm{C}(11)-\mathrm{Au}(3)-\mathrm{C}(21) 178.1(3)^{\circ}$.
$\left\{\mathrm{Au}\left[\mu-\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CH}\right]\right\}_{2} \quad$ (containing deprotonated dppm ligands) with MeI, or from $\left[\mathrm{Au}_{2}(\mu-\mathrm{dppm})_{2}\left[\mathrm{BH}_{3}(\mathrm{CN})\right]_{2}\right.$ with NaI; the latter was converted to the dicyanoaurate(I)
salt on attempted recrystallisation. In all three examples, the two gold atoms are bridged by the iodine, with a strongly acute $\mathrm{Au}-\mathrm{I}-\mathrm{Au}$ angle $\left[56.90(1)^{\circ}\right.$ in $\mathbf{9}, 54.2(1)^{\circ}$ in

Fig. 2. Plots of: (a) a single molecule and (b) the packing in the unit cell, of $\left\{(\text { tol })_{3} \mathrm{P}\right\} \mathrm{AuC} \equiv \mathrm{CC} \equiv \mathrm{CAu}\left\{\mathrm{P}(\text { tol })_{3}\right\}$ (4).

Fig. 3. Plots of: (a) the cation and (b) the anion in $\left[\mathrm{Au}_{2}(\mu-\mathrm{I})(\mu-\mathrm{dppm})_{2}\right]\left[\mathrm{Au}\left(\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)_{2}\right]$ (9).
the $\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}$salt $]$. For 9, the two $\mathrm{Au}-\mathrm{I}$ distances are $3.1014,3.1071(6) \AA$, their near equality being similar to those in the iodide ($3.127,3.196(2) \AA$) but contrasting with those in the $\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}$salt (3.161, 3.342(3) $\left.\AA\right)$. The $\mathrm{Au} \cdots \mathrm{Au}$ separations are 2.9576(4) (9), 2.948(2) (iodide) and $2.967(1) \AA$ (dicyanoaurate), while the closest approaches to the I atom are from the phenyls of adjacent cations $[\mathrm{I} \cdots \mathrm{C}(2213)(x, 1-y, 1-z) 3.890(8) \AA]$.

In the anion (Fig. 3(b)), the two $\mathrm{Au}-\mathrm{C}(\mathrm{sp})$ distances are 2.009, 1.984(8) A, with alternating short-long-short C-C separations along the chain $[\mathrm{C}(n 1)-\mathrm{C}(n 2) 1.15,1.21(1)$, $\mathrm{C}(n 2)-\mathrm{C}(n 3) \quad 1.42, \quad 1.39(1), \mathrm{C}(n 3)-\mathrm{C}(n 4) 1.21,1.21(1) \AA$ $(n=1,2)$. The anion contains an 11 -atom $\mathrm{Si}^{-} \mathrm{C}_{4}-\mathrm{Au}-\mathrm{C}_{4}-$ Si chain which is essentially linear, with angles at Au 178.1(3) ${ }^{\circ}$ and ranging from 170 to 180° at C. Bending is all in the same sense, the total summing to 36.9° and resulting in the two Si atoms being $15.053(4) \AA$ apart, some $0.20 \AA$ shorter than the sum of interatomic distances (15.25 Å).

Bridging of two diynyl-gold chains through mercury was achieved by direct reaction of $\mathrm{Hg}(\mathrm{OAc})_{2}$ with $\mathbf{1}$ in thf, when white $\operatorname{Hg}\left\{\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CAu}\left[\mathrm{P}(\text { tol })_{3}\right]_{2}(\mathbf{1 0}\right.$-tol $)$ was isolated in 54% yield. The PPh_{3}-analogue, $\mathrm{Hg}\left\{\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CAu}\left(\mathrm{PPh}_{3}\right)\right\}_{2}$ ($\mathbf{1 0 - P h}$) was obtained from a similar reaction of $\mathrm{Au}(\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CH})\left(\mathrm{PPh}_{3}\right)$. Weak $v(\mathrm{C} \equiv \mathrm{C})$ bands are found at 2166 and $2052(\mathbf{t o l})$ or 2100 and $2014(\mathbf{P h}) \mathrm{cm}^{-1}$, while for $\mathbf{1 0}-\mathrm{tol}, \mathrm{P}(\mathrm{tol})_{3}$ resonances occur at $\delta_{\mathrm{H}} 2.35$ and δ_{C}
$21.43(\mathrm{Me}), \delta_{\mathrm{H}} 7.18-7.39$ and $\delta_{\mathrm{C}} 126.8-141.7\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$ and $\delta_{\mathrm{P}} 40.6$. Resonances at $\delta_{\mathrm{C}} 72.52,88.15[J(\mathrm{CP}) 29 \mathrm{~Hz}]$ and 102.52 are tentatively assigned to $\mathrm{C}_{\gamma}, \mathrm{C}_{\alpha}$ and C_{δ}, respectively, on the basis of the observed C-P coupling for C_{α} and the anticipated shift of C_{δ} upon coordination to the mercury centre. Only aromatic resonances were found for 10-Ph.

The first complex containing two different Group 11 metal centres linked by a diyndiyl ligand was obtained by treating 1 with LiBu , followed by addition of CuCl (triphos) [triphos $\left.=\mathrm{MeC}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{3}\right]$, when creamy white $\{($ triphos $) \mathrm{Cu}\} \mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{C}\left\{\mathrm{Au}\left[\mathrm{P}(\mathrm{tol})_{3}\right]\right\}$ (11) was isolated in 62% yield. The IR spectrum contains two $v(\mathrm{C} \equiv \mathrm{C})$ bands at 2158 and $2127 \mathrm{~cm}^{-1}$, while only phosphorus ligand resonances are found in the ${ }^{1} \mathrm{H}\left[\delta 1.44(\mathrm{C}-\mathrm{Me}), 2.28\left(\mathrm{P}-\mathrm{CH}_{2}\right)\right.$, 2.36 (tol-Me), 6.82-7.46 (aromatic)], ${ }^{13} \mathrm{C}[21.43$ (tol-Me), 36.47 and $37.53(\mathrm{C}-\mathrm{Me}), 39.93\left(\mathrm{P}^{\left.-\mathrm{CH}_{2}\right)}\right.$ and 125.3-142.3 (aromatic)] and ${ }^{31} \mathrm{P}\left[-25.1\right.$ (triphos), $\left.45.2\left\{\mathrm{P}(\mathrm{tol})_{3}\right\}\right]$ NMR spectra.

3. Conclusions

This paper has described the syntheses of several examples of phosphine-gold(I) complexes containing various diynyl fragments, the molecular structures of four of these being determined by single-crystal X-ray diffraction studies. Some of these compounds have found use as
intermediates, particularly in the synthesis of longer carbon chains by elimination of phosphine-gold(I) halides, as described elsewhere [8].

4. Experimental

4.1. General

All reactions were carried out under dry nitrogen, although normally no special precautions to exclude air were taken during subsequent work-up. Common solvents were dried, distilled under nitrogen and degassed before use. Separations were carried out by preparative thin-layer chromatography on glass plates ($20 \times 20 \mathrm{~cm}^{2}$) coated with silica gel (Merck, 0.5 mm thick).

4.2. Instruments

IR spectra were obtained on a Bruker IFS28 FT-IR spectrometer. Spectra in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were obtained using a 0.5 mm path-length solution cell with NaCl windows. Nujol mull spectra were obtained from samples mounted between NaCl discs. NMR spectra were recorded on a Varian 2000 instrument $\left({ }^{1} \mathrm{H}\right.$ at $300.13 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 75.47 MHz , ${ }^{31} \mathrm{P}$ at 121.503 MHz). Unless otherwise stated, samples were dissolved in CDCl_{3} contained in 5 mm sample tubes. Chemical shifts are given in ppm relative to internal tetramethylsilane for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra and external $\mathrm{H}_{3} \mathrm{PO}$ for ${ }^{31} \mathrm{P}$ NMR spectra. Electrospray mass spectra (ES-MS) were obtained from samples dissolved in MeOH unless otherwise indicated. Solutions were injected into a Varian Platform II spectrometer via a 10 mL injection loop. Nitrogen was used as the drying and nebulising gas. Chemical aids to ionisation were used [15]. Elemental analyses were by CMAS, Belmont, Vic., Australia.

4.3. Reagents

$\mathrm{AuCl}\left(\mathrm{PR}_{3}\right)\left(\mathrm{R}=\mathrm{Ph}[16]\right.$, tol [17]), $[\mathrm{ppn}]\left[\mathrm{Au}(\mathrm{acac})_{2}\right][18]$, $(\mathrm{AuCl})_{2}(\mu-\mathrm{dppm})[19], \mathrm{Au}(\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CH})\left(\mathrm{PPh}_{3}\right)[7], \mathrm{CuCl}-$ (triphos) [20], $\mathrm{HC} \equiv \mathrm{CC} \equiv \mathrm{CR}(\mathrm{R}=\mathrm{H}$ [21], Fc [22]) and $\mathrm{Me}_{3} \mathrm{Si}\left(\mathrm{C} \equiv \mathrm{C}_{n}\right)_{n} \mathrm{SiMe}_{3}(n=2$ [23], 3 [24], 4 [25]) were obtained as previously described.

4.3.1. $\mathrm{Au}(\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CH})\left\{\mathrm{P}(\mathrm{tol})_{3}\right\}$ (1)

To a solution of $\mathrm{AuCl}\left\{\mathrm{P}(\mathrm{tol})_{3}\right\}(2.0 \mathrm{~g}, 3.73 \mathrm{mmol})$ in thf/ $\mathrm{NHEt}_{2}(60 \mathrm{~mL}, 1 / 3)$ was added CuI ($71 \mathrm{mg}, 0.37 \mathrm{mmol}$) followed by $\mathrm{HC} \equiv \mathrm{CC} \equiv \mathrm{CH}(6.9 \mathrm{~mL}$ of a 2.7 M solution in thf, 18.6 mmol) and the mixture was stirred at r.t. for 30 min . The solvent was removed and the residue extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and loaded onto a SiO_{2} column. The product was eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, addition of hexane and reduction of solvent volume resulting in precipitation of pale yellow $\mathrm{Au}(\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CH})\left\{\mathrm{P}(\mathrm{tol})_{3}\right\}(1)(1.3 \mathrm{~g}, 63 \%)$. Anal. Found: $\mathrm{C}, 54.51 ; \mathrm{H}, 4.01 . \mathrm{C}_{25} \mathrm{H}_{22} \mathrm{AuP}$ requires: $\mathrm{C}, 54.56 ; \mathrm{H}, 4.03$; M, 550. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\equiv \mathrm{CH}) 3300 ; v(\mathrm{C} \equiv \mathrm{C}) 2157 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR: $\delta 1.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}), 2.38(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Me}), 7.20-$
7.43 (m, 12H, tol). ${ }^{13} \mathrm{C}$ NMR: $\delta 22.17$ (s, Me), 60.14 (s, C_{δ}), $69.55\left(\mathrm{~s}, \mathrm{C}_{\gamma}\right), 85.49$ (br, C_{β}), 125.75-141.97 (m, tol). ${ }^{31}$ P NMR: $\delta 40.30$.

4.3.2. $\mathrm{Au}\left(\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)\left(\mathrm{PPh}_{3}\right)(2-\mathrm{Ph})$

To a suspension of $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)(500 \mathrm{mg}, 1.01 \mathrm{mmol})$ in thf $/ \mathrm{NHEt}_{2} \quad(30 \mathrm{~mL}, \quad 1 / 2)$ containing $\mathrm{CuI} \quad(20 \mathrm{mg}$, $0.105 \mathrm{mmol})$ was added $\mathrm{HC} \equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}(185 \mathrm{mg}$, 1.52 mmol) and the mixture was stirred at r.t. for 1 h . The solvent was removed and the residue extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and loaded onto a SiO_{2} column. The product was eluted with hexane. Reduction of solvent volume resulted in precipitation of pale yellow $\mathrm{Au}(\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CSi}-$ $\left.\mathrm{Me}_{3}\right)\left(\mathrm{PPh}_{3}\right)(\mathbf{2}-\mathbf{P h})(450 \mathrm{mg}, 77 \%)$. Anal. Found: C, 49.78; $\mathrm{H}, 3.38 . \mathrm{C}_{25} \mathrm{H}_{24}$ AuPSi.0.5 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires: C, $49.16 ; \mathrm{H}$, 4.05; M, 580. IR (nujol): $v(\mathrm{C} \equiv \mathrm{C}) 2184 \mathrm{~m}, 2129 \mathrm{~m}, 2038 \mathrm{~m}$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta 0.14\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right), 7.51-7.42(\mathrm{~m}$, $15 \mathrm{H}, \mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR $\delta-0.12\left(\mathrm{~s}, \mathrm{SiMe}_{3}\right), 78.71\left(\mathrm{~s}, \mathrm{C}_{\delta}\right)$, $86.67\left(\mathrm{~s}, \mathrm{C}_{\gamma}\right), 89.52\left(\mathrm{br}, \mathrm{C}_{\beta}\right), 134.31-129.08(\mathrm{~m}, \mathrm{Ph}) .{ }^{3} \mathrm{P}$ NMR: $\delta 42.41$.

4.3.3. $\mathrm{Au}\left(\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)\left\{\left(\mathrm{P}(\mathrm{tol})_{3}\right\} \quad(2-\mathrm{tol})\right.$

To a solution of $\mathrm{AuCl}\left\{\mathrm{P}(\mathrm{tol})_{3}\right\}(250 \mathrm{mg}, 0.47 \mathrm{mmol})$ in thf $/ \mathrm{NHEt}_{2}(15 \mathrm{~mL}, 1 / 3)$ was added $\mathrm{CuI}(\mathrm{ca} 5 \mathrm{mg})$ followed by $\mathrm{HC} \equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}(114 \mathrm{mg}, 0.94 \mathrm{mmol})$. The yellow solution was stirred for 1 h in the dark and the solvent removed. Extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and passage through a SiO_{2} column eluting with hexane yielded a pale yellow band which gave pale yellow solid $\mathrm{Au}(\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CSi}-$ $\left.\mathrm{Me}_{3}\right)\left\{\mathrm{P}(\mathrm{tol})_{3}\right\}$ (2-tol) ($195 \mathrm{mg}, 67 \%$). Anal. Found: C, $53.98 ; \mathrm{H}, 4.83 \%$. Calc. for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{AuPSi}: \mathrm{C}, 54.02 ; \mathrm{H}$, 4.86; M, 623. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{C} \equiv \mathrm{C}) 2183 \mathrm{~m}, 2131 \mathrm{~m}$, $2036 \mathrm{~m} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta 0.13\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right), 2.37(\mathrm{~s}$, $9 \mathrm{H}, \mathrm{Me}), 7.19-7.42\left(\mathrm{~m}, 12 \mathrm{H}\right.$, tol). ${ }^{13} \mathrm{C}$ NMR: $\delta-0.14$ (s, SiMe_{3}), $21.41(\mathrm{~s}, \mathrm{Me}), 78.89\left(\mathrm{~s}, \mathrm{C}_{\delta}\right), 87.02\left(\mathrm{~s}, \mathrm{C}_{\gamma}\right), 89.62$ ($\mathrm{br}, \mathrm{C}_{\beta}$) , 125.82-142.00 (m, tol). ${ }^{31} \mathrm{P}$ NMR: $\delta 40.25$.

4.3.4. $\mathrm{Au}(\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CFc})\left(\mathrm{PPh}_{3}\right)$ (3)

$\mathrm{KOH}(100 \mathrm{mg}, 1.8 \mathrm{mmol})$ was added to a suspension of $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)(105 \mathrm{mg}, 0.212 \mathrm{mmol})$ and $\mathrm{HC} \equiv \mathrm{CC} \equiv \mathrm{CFc}$ $(55 \mathrm{mg}, 0.235 \mathrm{mmol})$ in dry $\mathrm{MeOH}(15 \mathrm{~mL})$ and the mixture was stirred for 1 h . After cooling on ice, the precipitate was collected on a sinter and washed with cold MeOH to give $\mathrm{Au}(\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CFc})\left(\mathrm{PPh}_{3}\right)$ (3) $(120 \mathrm{mg}, 85 \%)$ as an orange powder. Anal. Found: C, 55.53; H, 3.40\%. Calc. for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{AuFeP}: \mathrm{C}, 55.52 ; \mathrm{H}, 3.49 ; M, 000$. IR (nujol): $v(\mathrm{C} \equiv \mathrm{C}) 2191 \mathrm{w}, 2053 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 3.83$, $4.34\left(2 \times \mathrm{m}, 2 \times 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.01(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Fe}-\mathrm{Cp}), 6.88-$ 6.98, 7.10-7.16 $(2 \times \mathrm{m}, 8+7 \mathrm{H}, \mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta$ $66.61(\mathrm{Cx}), 69.19,72.85\left(2 \times \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 70.65(\mathrm{Fe}-\mathrm{Cp})$, 74.82, 88.27, 128.19-134.92 (m, Ph). ${ }^{31} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 41.36$. ES-MS (MeOH, m / z): 692, M^{+}.

[^1]$\mathrm{AuCl}\left\{\mathrm{P}(\mathrm{tol})_{3}\right\} \quad(276 \mathrm{mg}, 0.52 \mathrm{mmol})$ was added and the mixture was stirred a further 1.5 h . The pale yellow precipitate which formed was collected and washed with MeOH , $\mathrm{Et}_{2} \mathrm{O}$ and pentane and air-dried to give $\left\{\left[(\mathrm{tol})_{3^{-}}\right.\right.$ $\mathrm{P}] \mathrm{Au}\} \mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{C}\left\{\mathrm{Au}\left[\mathrm{P}(\mathrm{tol})_{3}\right]\right\}$ (4) ($230 \mathrm{mg}, 85 \%$). Anal. Found: C, 52.43; H, 3.96%. Calc. for $\mathrm{C}_{46} \mathrm{H}_{42} \mathrm{Au}_{2} \mathrm{P}_{2}$: C, $52.58 ; \mathrm{H}, ~ 4.03 ; \quad M, 1051$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{C} \equiv \mathrm{C})$ $2157 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta 2.29(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Me}), 7.12-7.32(\mathrm{~m}$, 12 H, tol). ${ }^{13} \mathrm{C}$ NMR: $\delta 21.39$ (s, Me), 88.11 (br, C_{β}), $119.89\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=140 \mathrm{~Hz}, \mathrm{C}_{\alpha}\right), 126.67-141.69\left(\mathrm{~m}\right.$, tol). ${ }^{31} \mathrm{P}$ NMR: $\delta 40.57$ (s).
(b) From 1 and $\mathrm{AuCl}_{\left\{\mathrm{P}(\text { tol })_{3}\right\} \text {. A Schlenk flask was }}$ charged with $1(100 \mathrm{mg}, \quad 0.18 \mathrm{mmol}), \quad \mathrm{AuCl}\left\{\mathrm{P}(\mathrm{tol})_{3}\right\}$ $(97 \mathrm{mg}, \quad 0.18 \mathrm{mmol}), \mathrm{CuI}$ (ca. 5 mg) and thf $/ \mathrm{NHEt}_{2}$ $(20 \mathrm{~mL}, 1 / 2)$. The suspension cleared to give a yellow solution that was stirred for 1 h at r.t. The solution was filtered, solvent removed and a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract of the residue was passed through a SiO_{2} column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-hexane, 1/1) to give gave pale yellow 4 ($148 \mathrm{mg}, 78 \%$).

4.3.6. $\left\{\left(P h_{3} P\right) A u\right\} C \equiv C C \equiv C\left\{A u\left[P(t o l)_{3}\right]\right\}$ (5)

To a solution of $\mathrm{Au}(\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CH})\left(\mathrm{PPh}_{3}\right) \quad(250 \mathrm{mg}$, 0.49 mmol) and $\mathrm{AuCl}\left\{\mathrm{P}(\mathrm{tol})_{3}\right\}(264 \mathrm{mg}, 0.49 \mathrm{mmol})$ in thf $/ \mathrm{NHEt}_{2}(30 \mathrm{~mL}, 1 / 3)$ was added CuI (ca. 5 mg) and the resulting yellow solution was stirred for 1 h . The yel-low-brown precipitate was collected and washed with $\mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}, \mathrm{MeOH}$ and $\mathrm{Et}_{2} \mathrm{O}$ and air-dried to give $\left\{\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{Au}\right\} \mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{C}\left\{\mathrm{Au}\left[\mathrm{P}(\mathrm{tol})_{3}\right]\right\} \quad(5) \quad(250 \mathrm{mg}, 51 \%)$. Anal. Found: C, $51.09 ; \mathrm{H}, 3.45 \%$. Calc. for $\mathrm{C}_{43} \mathrm{H}_{36} \mathrm{Au}_{2} \mathrm{P}_{2}$: C, $51.20 ; \mathrm{H}, 3.60 ; M$, 1009. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{C} \equiv \mathrm{C})$ $2153 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta 2.35(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Me}), 7.17-7.54(\mathrm{~m}$, 27 H , tol). ${ }^{13} \mathrm{C}$ NMR: $\delta 21.44$ (s, Me), 85.78 (br, C_{β}), 88.23 (br, C_{γ}), $125.80\left(\mathrm{br}, \mathrm{C}_{\alpha}\right), 126.96\left(\mathrm{br}, \mathrm{C}_{\delta}\right), 129.00-$ 142.38 (m, tol). ${ }^{31} \mathrm{P}$ NMR: $\delta 40.24\left[\mathrm{~s}, \mathrm{P}\left(\mathrm{tol}_{3}\right)\right], 42.60(\mathrm{~s}$, PPh_{3}).

4.3.7. $\left\{\left[(\mathrm{tol})_{3} P\right] A u\right\}(C \equiv C)_{3}\left\{A u\left[P(\text { tol })_{3}\right]\right\}$ (6)

A solution of $\mathrm{Me}_{3} \mathrm{Si}\left(\mathrm{C} \equiv \mathrm{C}_{3}\right)_{3} \mathrm{SiMe}_{3}(50 \mathrm{mg}, 0.23 \mathrm{mmol})$ and $\mathrm{NaOH}(184 \mathrm{mg}, 4.60 \mathrm{mmol})$ in $\mathrm{MeOH}(25 \mathrm{~mL})$ was stirred for $30 \mathrm{~min} . \mathrm{AuCl}\left\{\mathrm{P}(\mathrm{tol})_{3}\right\}(246 \mathrm{mg}, 0.46 \mathrm{mmol})$ was added and the mixture was stirred a further 1.5 h . The pale yellow precipitate was collected and washed with $\mathrm{MeOH}, \mathrm{Et}_{2} \mathrm{O}$ and pentane and air-dried to give $\left\{\left[(\mathrm{tol})_{3}-\right.\right.$ $\mathrm{P}] \mathrm{Au}\}(\mathrm{C} \equiv \mathrm{C})_{3}\left\{\mathrm{Au}\left[\mathrm{P}(\mathrm{tol})_{3}\right]\right\} \quad$ (6) $\quad(188 \mathrm{mg}, \quad 76 \%)$. Anal. Found: C, $53.66 ; \mathrm{H}, 3.87 \%$. Calc. for $\mathrm{C}_{48} \mathrm{H}_{42} \mathrm{Au}_{2} \mathrm{P}_{2}$: C, 53.64; H, 3.94; M, 1075. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{C} \equiv \mathrm{C}) 2139 \mathrm{sh}$, $2115 \mathrm{~m} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta 2.38(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Me}), 7.20-7.40(\mathrm{~m}$, 12 H, tol). ${ }^{13} \mathrm{C}$ NMR: $\delta 21.42$ (s, Me), 81.63 (s, C_{γ}), 88.13 (br, C_{β}), 127.94 (br, C_{α}), 129.77-142.06 (m, tol). ${ }^{31} \mathrm{P}$ NMR: $\delta 40.26$ (s).

4.3.8. $\left\{\left[(\mathrm{tol})_{3} P\right] A u\right\}(C \equiv C)_{4}\left\{A u\left[P(\text { tol })_{3}\right]\right\}$ (7)

(a) From $\mathrm{AuCl}\left\{\mathrm{P}(\mathrm{tol})_{3}\right\}$ and $\mathrm{Me}_{3} \mathrm{Si}(\mathrm{C} \equiv \mathrm{C})_{4} \mathrm{SiMe}_{3}$. A solution of $\mathrm{Me}_{3} \mathrm{Si}(\mathrm{C} \equiv \mathrm{C})_{4} \mathrm{SiMe}_{3}(75 \mathrm{mg}, 0.31 \mathrm{mmol})$ and $\mathrm{NaOH}(248 \mathrm{mg}, 6.20 \mathrm{mmol})$ in $\mathrm{MeOH}(25 \mathrm{~mL})$ was stirred for 30 min . $\mathrm{AuCl}\left\{\mathrm{P}(\mathrm{tol})_{3}\right\}(302 \mathrm{mg}, 0.56 \mathrm{mmol})$ was added and the mixture stirred for a further 1.5 h . A pale yellow
precipitate had formed and was collected and washed with $\mathrm{MeOH}, \mathrm{Et}_{2} \mathrm{O}$ and pentane and air-dried to give $\left\{\left[(\mathrm{tol})_{3^{-}}\right.\right.$ $\mathrm{P}] \mathrm{Au}\}(\mathrm{C} \equiv \mathrm{C})_{4}\left\{\mathrm{Au}\left[\mathrm{P}(\mathrm{tol})_{3}\right]\right\} \quad$ (7) $\quad(60 \mathrm{mg}, \quad 20 \%) . \quad$ Anal. Found: C, $54.59 ; \mathrm{H}, 3.77 \%$. Calc. for $\mathrm{C}_{50} \mathrm{H}_{42} \mathrm{Au}_{2} \mathrm{P}_{2}$: C, 54.66; H, 3.85; M, 1099. IR (nujol): $v(\mathrm{C} \equiv \mathrm{C}) 2167 \mathrm{w}$, $2134 \mathrm{~m} \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR: $\delta 2.36(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Me}), 7.20-7.38(\mathrm{~m}$, 12 H, tol). ${ }^{13} \mathrm{C}$ NMR: $\delta 21.42(\mathrm{~s}, \mathrm{Me}), 60.91\left(\mathrm{~s}, \mathrm{C}_{\delta}\right), 67.23$ (s, C_{χ}), 86.94 (br, C_{β}), 131.29 (br, C_{α}), 126.15-142.02 (m, tol). ${ }^{31}$ P NMR: $\delta 40.26$ (s).
(b) From $A u(C \equiv C C \equiv C H)\left\{P(\text { tol })_{3}\right\}+C u C l l t m e d a$. The Hay catalyst was prepared from $\mathrm{CuCl}(100 \mathrm{mg}$, 1.01 mmol) in acetone (5 mL) and tmeda (0.15 mL , 0.3 mmol) which was added dropwise. The resulting blue solution was stirred a further 30 min . Dioxygen was bubbled through a solution of $\mathbf{1}(300 \mathrm{mg}, 0.55 \mathrm{mmol})$ in acetone (25 mL). The Hay catalyst was added in 1 mL portions over 1 h after which the reaction was adjudged complete (t.l.c). The solvent was removed and the residue chromatographed on a SiO_{2} column (hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $1 / 1)$. Removal of the solvent from the bright yellow fraction yielded $7(100 \mathrm{mg}, 33 \%)$.
(c) From $\mathrm{Au}(\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CH})\left\{\mathrm{P}(\mathrm{tol})_{3}\right\}$ and $\mathrm{Cu}(\mathrm{OAc})_{2} /$ pyridine. To a solution of $\mathbf{1}(100 \mathrm{mg}, 0.18 \mathrm{mmol})$ in pyridine $(3 \mathrm{~mL})$ was added $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(55 \mathrm{mg}, 0.27 \mathrm{mmol})$ and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 h . The solvent was removed and the dark brown residue passed down a SiO_{2} column eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. A bright yellow fraction was collected and hexane (10 mL) added. Removal of the solvent gave yellow 7 ($56 \mathrm{mg}, 57 \%$).

4.3.9. $[\mathrm{ppn}]\left[\mathrm{Au}\left\{\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CAu}\left[\mathrm{P}(\mathrm{tol})_{3}\right]\right\}_{2}\right]$ ($\left.\boldsymbol{8}\right)$

A solution of $\mathbf{1}(110 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $[\mathrm{ppn}]\left[\mathrm{Au}(\mathrm{acac})_{2}\right]$ ($92 \mathrm{mg}, 0.1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{NHEt}_{2}(10 \mathrm{~mL}, 10 / 1)$ was stirred at r.t for 2 h . The solvent was then removed and the residue extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered into cold hexane. The cream-white precipitate was collected and washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$ and n-pentane (20 mL) and air-dried to give $[\mathrm{ppn}]\left[\mathrm{Au}\left\{\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CAu}\left[\mathrm{P}(\mathrm{tol})_{3}\right]\right\}_{2}\right]$ (8) $(72 \mathrm{mg}, 39 \%)$. Anal. Found: C, 56.49 ; H, 4.06%. Calc. for $\mathrm{C}_{86} \mathrm{H}_{72} \mathrm{Au}_{3} \mathrm{NP}_{4}$: C, $56.31 ; \mathrm{H}, 3.96 ; M, 1296$. IR (nujol): $v(\mathrm{C} \equiv \mathrm{C}) 2145 \mathrm{w} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta 2.29(\mathrm{~s}, 18 \mathrm{H}, \mathrm{Me}), 7.15-$ $7.62(\mathrm{~m}, 54 \mathrm{H}, \mathrm{Ph}$, tol) $){ }^{13} \mathrm{C}$ NMR: $\delta 21.36(\mathrm{~s}, \mathrm{Me}), 125.54-$ $141.81\left(\mathrm{~m}, \mathrm{Ph}\right.$, tol). ${ }^{31} \mathrm{P}$ NMR: $\delta 22.21(\mathrm{~s}, \mathrm{ppn}), 39.62$ [s , $\mathrm{P}\left(\mathrm{tol}_{3}\right)_{3}$.

4.3.10. $\left[A u_{2}(\mu-I)(\mu-d p p m)_{2}\right]\left[A u\left(C \equiv C C \equiv C S i M e_{3}\right)_{2}\right]$ (9)

$\mathrm{HC} \equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3} \quad(88 \mathrm{mg}, \quad 0.72 \mathrm{mmol})$ and CuI ($20 \mathrm{mg}, 0.07 \mathrm{mmol}$) were added to a suspension of $(\mathrm{AuCl})_{2}(\mu-\mathrm{dppm}) \quad(200 \mathrm{mg}, \quad 0.24 \mathrm{mmol})$ in thf $/ \mathrm{NHEt}_{2}$ $(45 \mathrm{~mL}, 8 / 1)$. The resulting clear solution was stirred at r.t. for 2 h , a small amount of precipitate was filtered off, and the filtrate was evaporated. A benzene extract of the residue was added dropwise to stirred hexane to give a light yellow precipitate, which was filtered off and reprecipitated twice. Crystallisation $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $)$ gave pure $\left[\mathrm{Au}_{2}(\mu\right.$ -$\left.\mathrm{I})(\mu-\mathrm{dppm})_{2}\right]\left[\mathrm{Au}\left(\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)_{2}\right](9)(50 \mathrm{mg}, 42 \%)$ as
pale lime-yellow crystals. Anal. Found: C, 44.27; H, 3.70\%. Calc. for $\mathrm{C}_{64} \mathrm{H}_{62} \mathrm{Au}_{3} \mathrm{IP}_{4} \mathrm{Si}_{2}$: C, $44.45 ; \mathrm{H}, 3.61 ; M$ (cation), 1289; M (anion), 439. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{C} \equiv \mathrm{C}) 2176 \mathrm{w}$, $2122 \mathrm{~m} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.16\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{SiMe}_{3}\right)$, $4.57\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 7.24-7.76(\mathrm{~m}, 40 \mathrm{H}, \mathrm{Ph}) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 27.7$ (s, dppm). ES-MS (positive ion, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$, $\mathrm{m} / \mathrm{z}): 1289,\left[\mathrm{Au}_{2} \mathrm{I}(\mathrm{dppm})_{2}\right]^{+} ;$(negative ion, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}, \mathrm{~m} / \mathrm{z}$): 439, $\left[\mathrm{Au}\left(\mathrm{C}_{4} \mathrm{SiMe}_{3}\right)_{2}\right]^{-}$.

4.3.11. $\operatorname{Hg}\left\{C \equiv C C \equiv C A u\left(\mathrm{PPh}_{3}\right)\right\}_{2}(10-\mathrm{Ph})$

A solution of $\mathrm{Au}(\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CH})\left(\mathrm{PPh}_{3}\right) \quad(200 \mathrm{mg}$, $0.39 \mathrm{mmol})$ and $\mathrm{Hg}(\mathrm{OAc})_{2}(62 \mathrm{mg}, 0.19 \mathrm{mmol})$ in thf $(15 \mathrm{~mL})$ was refluxed for 1 h . After allowing to cool to r.t., a grey/white precipitate had formed which was collected and washed with $\mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}, \mathrm{MeOH}$ and $\mathrm{Et}_{2} \mathrm{O}$ and air-dried to give $\mathrm{Hg}\left\{\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CAu}\left(\mathrm{PPh}_{3}\right)\right\}_{2}(\mathbf{1 0 - P h})$ ($114 \mathrm{mg}, 49 \%$). Anal. Found: C, 43.61 ; H, 2.27%. Calc. for $\mathrm{C}_{44} \mathrm{H}_{30} \mathrm{Au}_{2} \mathrm{Hg}_{2} \mathrm{P}_{2}$: C, 43.49; H, 2.49; M, 967. IR (nujol): $v(\mathrm{C} \equiv \mathrm{C}) 2100 \mathrm{w}, 2014 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta 7.34-7.52(\mathrm{~m}$, $\mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR $\delta 128.99-134.46(\mathrm{~m}, \mathrm{Ph}) .{ }^{31} \mathrm{P}$ NMR: δ 42.68 (s).

4.3.12. $\mathrm{Hg}\left\{\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CAu}\left[\mathrm{P}(\mathrm{tol})_{3}\right]\right\}_{2}(10-\mathrm{tol})$

A solution of $\mathbf{1}(200 \mathrm{mg}, 0.36 \mathrm{mmol})$ and $\mathrm{Hg}(\mathrm{OAc})_{2}$ $(57 \mathrm{mg}, 0.18 \mathrm{mmol})$ in thf $(15 \mathrm{~mL})$ was warmed to $45^{\circ} \mathrm{C}$ and stirred for 2 h . Filtration and addition of hexane $(150 \mathrm{~mL})$ to the filtrate produced a milky-white precipitate which was collected and washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$ and n-pentane $(20 \mathrm{~mL})$ and air-dried to give $\mathrm{Hg}\{\mathrm{C} \equiv \mathrm{CC} \equiv$ $\left.\mathrm{CAu}\left[\mathrm{P}(\text { tol })_{3}\right]\right\}_{2}(\mathbf{1 0 - t o l})(126 \mathrm{mg}, 54 \%)$. Anal. Found: C, 46.35; $\mathrm{H}, 3.35 \%$. Calc. for $\mathrm{C}_{50} \mathrm{H}_{42} \mathrm{Au}_{2} \mathrm{HgP}_{2}: \mathrm{C}, 46.22 ; \mathrm{H}$, 3.26; $M, 1299$. IR (nujol): $v(\mathrm{C} \equiv \mathrm{C}) 2166 \mathrm{w}, 2052 \mathrm{w} \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR: $\delta 2.35$ (s, 18H, Me), 7.18-7.39 (m, 24H, tol).
${ }^{13} \mathrm{C}$ NMR: $\delta 21.43$ (s, Me), 72.52, $88.15\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=29 \mathrm{~Hz}\right)$, 102.52, 126.80-141.70 (m, tol). ${ }^{31} \mathrm{P}$ NMR: $\delta 40.62$ [s, $\left.\mathrm{P}(\mathrm{tol})_{3}\right]$.

4.3.13. $\left\{\left[(\right.\right.$ tol $\left.\left.){ }_{3} P\right] A u\right\} C \equiv C C \equiv C\{C u($ triphos $)\}$ (11)

To a solution of $1(100 \mathrm{mg}, 0.18 \mathrm{mmol})$ in thf $(30 \mathrm{~mL})$ at $-100{ }^{\circ} \mathrm{C}$ was added $\mathrm{nBuLi}(73 \mu \mathrm{~L}, 0.18 \mathrm{mmol}$ of a 2.5 M solution in hexane). Stirring was continued for 15 min . $\mathrm{CuCl}($ triphos) ($123 \mathrm{mg}, 0.17 \mathrm{mmol}$) was added and the yellow solution turned into a cream-coloured suspension which on allowing to warm to r.t slowly cleared to give a yellow solution. After stirring for 3.5 h at r.t the solvent was removed. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (min) and then filtered into cold hexane. A cream-white precipitate was collected and washed with $\mathrm{Et}_{2} \mathrm{O}$ $(2 \times 5 \mathrm{~mL})$ and n-pentane $(2 \times 5 \mathrm{~mL})$ and air-dried to give $\left\{\left[(\right.\right.$ tol $\left.\left.){ }_{3} \mathrm{P}\right] \mathrm{Au}\right\} \mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{C}\{\mathrm{Cu}($ triphos $)\} \quad$ (11) \quad (130 mg , 62%). Anal. Found: C, 63.62; H, 5.07\%. Calc. for $\mathrm{C}_{66} \mathrm{H}_{60} \mathrm{AuP}_{4} \mathrm{Cu}: \mathrm{C}, 64.05 ; \mathrm{H}, 4.89 ; M$, 1238. IR (nujol): $v(\mathrm{C} \equiv \mathrm{C}) 2158 \mathrm{~m}, 2127 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta 1.44(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 2.28\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 2.36(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Me}), 6.82-7.46(\mathrm{~m}$, $42 \mathrm{H}, \mathrm{Ph}$, tol). ${ }^{13} \mathrm{C}$ NMR: $\delta 21.43$ (s, Me), 36.47 (m, C$\left.\mathrm{CH}_{3}\right), 37.53\left(\mathrm{~s}, \mathrm{C}-\mathrm{CH}_{3}\right), 39.93\left(\mathrm{~m}, \mathrm{P}-\mathrm{CH}_{2}\right), 125.27-$ 142.31 (m, Ph, tol). ${ }^{31} \mathrm{P}$ NMR: $\delta-25.08$ (triphos), 45.20 $\left[\mathrm{s}, \mathrm{P}(\text { tol })_{3}\right]$.

4.4. Structure determinations

Full spheres of diffraction data were measured at ca. 153 K using a Bruker AXS CCD area-detector instrument. $N_{\text {tot }}$ reflections were merged to N unique ($R_{\text {int }}$ cited) after

Table 2
Crystal data and refinement detail

Complex	1	$2^{\text {a }}$	3	4	9
Formula	$\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{AuP}$	$\mathrm{C}_{26.67} \mathrm{H}_{28.28} \mathrm{AuI}_{0.19} \mathrm{PSi}_{0.81}$	$\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{AuFeP}$	$\mathrm{C}_{46} \mathrm{H}_{42} \mathrm{Au}_{2} \mathrm{P}_{2}$	$\mathrm{C}_{64} \mathrm{H}_{62} \mathrm{Au}_{3} \mathrm{IP}_{4} \mathrm{Si}_{2}$
MW	550.4	623.6	692.3	1050.7	1729.1
Crystal system	Hexagonal	Monoclinic	Triclinic	Monoclinic	Triclinic
Space group	$P 61$	$P 2_{1} / c$	$P \overline{1}$	$P 2_{1} / c$	$P \overline{1}$
$a(\mathrm{~A})$	18.454(1)	12.454(2)	9.715(2)	19.691(2)	14.320(1)
$b(\AA)$		11.623(2)	10.442(3)	11.507(1)	15.198(1)
$c(\mathrm{~A})$	12.4035(7)	18.781(3)	12.742(3)	19.286(2)	17.330(1)
$\alpha\left({ }^{\circ}\right)$			99.732(3)		77.276(2)
$\beta\left({ }^{\circ}\right)$		103.404(4)	102.120(3)	115.219(3)	67.048(2)
$\gamma\left({ }^{\circ}\right)$			91.681(3)		64.328(2)
$V\left(\AA^{3}\right)$	3658	2645	1243	3953	3124
$\rho_{\text {calc }}$	1.499	$1.56{ }_{6}$	1.850	$1.76{ }_{5}$	1.838
Z	6	4	2	4	2
$2 \theta_{\text {max }}\left({ }^{\circ}\right.$)	75	75	55	60	65
$\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$) $\left(\mathrm{mm}^{-1}\right)$	6.1	5.9	6.6	7.5	7.7
$T_{\text {min } / \text { max }}$	0.70	0.60	0.65	0.69	0.66
Crystal dimensions (mm^{3})	$0.35 \times 0.08 \times 0.07$	$0.48 \times 0.07 \times 0.05$	$0.18 \times 0.14 \times 0.12$	$0.07 \times 0.05 \times 0.03$	$0.60 \times 0.07 \times 0.05$
$N_{\text {tot }}$	76293	54606	10698	55061	64271
$N\left(R_{\text {int }}\right)$	6486 (0.068)	13925 (0.063)	5589 (0.038)	11506 (0.065)	22906 (0.069)
$N_{\text {o }}$	3353	7978	4819	7933	14069
R	0.043	0.037	0.046	0.032	0.050
$R_{w}\left(n_{w}\right)$	0.047(8)	0.033(2)	0.058(9)	0.031(2)	0.053(6)

[^2]"empirical"/multiscan absorption correction (proprietary software), N_{o} with $F>4 \sigma(F)$ being used in the full-matrix least-squares refinements. All data were measured using monochromatic Mo $\mathrm{K} \alpha$ radiation, $\lambda=0.71073 \AA$. Anisotropic displacement parameter forms were refined for the non-hydrogen atoms, $\left(x, y, z, U_{\text {iso }}\right)_{\mathrm{H}}$ being refined. Conventional residuals R, R_{w} on $|F|$ are quoted [weights: $\left.\left(\sigma^{2}(F)+0.000 n_{w} F^{2}\right)^{-1}\right]$. Neutral atom complex scattering factors were used; computation used the xtal-3.7 program system [26]. Pertinent results are given in the figures (which show non-hydrogen atoms with 50% probability amplitude displacement ellipsoids and hydrogen atoms with arbitrary radii of $0.1 \AA$) and in Table 2.

5. Supplementary material

Full details of the structure determinations (except structure factors) have been deposited with the Cambridge Crystallographic Data Centre as CCDC 272500-272504. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +441223336 033; e-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

Acknowledgements

We thank Professor Brian Nicholson (University of Waikato, Hamilton, New Zealand) for providing the mass spectra and the ARC for support of this work.

References

[1] (a) R.J. Puddephatt, The Chemistry of Gold, Elsevier, Amsterdam, 1978;
(b) R.J. Puddephatt, in: G. Wilkinson, F.G.A. Stone, E.W. Abel (Eds.), Comprehensive Organometallic Chemistry, vol. 2, Pergamon Press, Oxford, 1982, p. 756;
(c) G.K. Anderson, Adv. Organomet. Chem. 20 (1982) 39;
(d) A. Grohmann, H. Schmidbaur, in: E.W. Abel, F.G.A. Stone, G. Wilkinson (Eds.), Comprehensive Organometallic Chemistry II, vol. 3, Pergamon Press, Oxford, 1995, p. 1;
(e) H. Schmidbaur, A. Grohmann, M.E. Olmos, in: H. Schmidbaur (Ed.), Gold: Progress in Chemistry, Biochemistry and Technology, Wiley, Chichester, 1999, p. 647.
[2] (a) H. Schmidbaur, Gold Bull. 23 (1990) 11;
(b) H. Schmidbaur, Pure Appl. Chem. 65 (1993) 691.
[3] (a) R.J. Puddephatt, Coord. Chem. Rev. 216-217 (2001) 313;
(b) K.-L. Cheung, S.-K. Yip, V.W.-W. Yam, J. Organomet. Chem. 689 (2004) 4451;
(c) G. Jia, R.J. Puddephatt, J.J. Vittal, N.C. Payne, Organometallics 12 (1993) 263;
(d) G. Jia, R.J. Puddephatt, J.J. Vittal, N.C. Payne, Organometallics 12 (1993) 4771.
[4] G. Jia, R.J. Puddephatt, J.D. Scott, J.J. Vittal, Organometallics 12 (1993) 3565.
[5] M.J. Irwin, J.J. Vittal, R.J. Puddephatt, Organometallics 16 (1997) 3541.
[6] M.-A. MacDonald, R.J. Puddephatt, G.P.A. Yap, Organometallics 19 (2000) 2194, and references cited therein.
[7] M.I. Bruce, B.C. Hall, B.W. Skelton, M.E. Smith, A.H. White, Dalton Trans. (2002) 995.
[8] A.B. Antonova, M.I. Bruce, B.G. Ellis, M. Gaudio, P.A. Humphrey, M. Jevric, G. Melino, B.K. Nicholson, G.J. Perkins, B.W. Skelton, B. Stapleton, A.H. White, N.N. Zaitseva, Chem. Commun. (2004) 960.
[9] S. Szafert, J.A. Gladysz, Chem. Rev. 103 (2003) 4175.
[10] (a) W. Lu, H.-F. Xiang, N. Zhu, C.-M. Che, Organometallics 21 (2002) 2343;
(b) C.-M. Che, H.Y. Chao, V.M. Miskowski, Y. Li, K.K. Cheung, J. Am. Chem. Soc. 123 (2001) 4985.
[11] Z. Cao, Q. Zhang, Chem. Eur. J. 10 (2004) 1920.
[12] J. Vicente, M.T. Chicote, Coord. Chem. Rev. 193-195 (1999) 1143.
[13] J. Shain, J.P. Fackler Jr., foJdox, Inorg. Chim. Acta 131 (1987) 157.
[14] M.N.I. Khan, C. King, D.D. Heinrich, J.P. Fackler Jr., L.C. Porter, savrow, Inorg. Chem. 28 (1989) 2150.
[15] W. Henderson, J.S. McIndoe, B.K. Nicholson, P.J. Dyson, J. Chem. Soc., Dalton Trans. (1998) 519.
[16] M.I. Bruce, B.K. Nicholson, O. bin Shawkataly, Inorg. Synth. 26 (1989) 325.
[17] R. Uson, A. Laguna, Inorg. Synth. 21 (1982) 71.
[18] J. Vicente, M.T. Chicote, Inorg. Synth. 32 (1998) 172.
[19] N.C. Payne, R. Ramachandran, R.J. Puddephatt, Can. J. Chem. 73 (1995) 6.
[20] L. Sacconi, S. Midollini, J. Chem. Soc., Dalton Trans. (1972) 1213.
[21] L. Brandsma, Preparative Acetylenic Chemistry, Elsevier, Amsterdam, 1971, p. 122.
[22] Z. Yuan, G. Stringer, I.R. Jobe, D. Kreller, K. Scott, L. Koch, N. Taylor, T.B. Marder, J. Organomet. Chem. 452 (1993) 115.
[23] G.E. Jones, D.A. Kendrick, A.B. Holmes, Org. Synth. Coll. vol. 8 (1993) 63.
[24] Y. Rubin, S.S. Lin, C.B. Knobler, J. Antony, A.M. Boldi, F. Diederich, J. Am. Chem. Soc. 113 (1991) 6943.
[25] D.R.M. Walton, F. Waugh, J. Organomet. Chem. 37 (1972) 45.
[26] S.R. Hall, D.J.du Boulay, R. Olthof-Hazekamp (Eds.), The System, University of Western Australia, 2000.

[^0]: * Corresponding author. Tel.: +6188303 5939; fax: + 61883034358.

 E-mail address: michael.bruce@adelaide.edu.au (M.I. Bruce).

[^1]: 4.3.5. $\left\{\left[(\mathrm{tol})_{3} P\right] A u\right\} C \equiv C C \equiv C\left\{A u\left[P(t o l)_{3}\right]\right\}$ (4)
 (a) From $\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3} . \mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{CC} \equiv$ $\mathrm{CSiMe}_{3}(50 \mathrm{mg}, 0.26 \mathrm{mmol})$ and $\mathrm{NaOH}(206 \mathrm{mg}, 5.20 \mathrm{mmol})$ were dissolved in $\mathrm{MeOH}(25 \mathrm{~mL})$ and stirred for 30 min .

[^2]: ${ }^{\text {a }}$ The material modelled as diynyl co-crystallised with iodide, both components resolvable and refinable with occupancies $0.813(2)$ and complement.

